

MEHRAN UNIVERSITY OF ENGINEERING AND TECHNOLOGY JAMSHORO **Department of Civil Engineering**

LESSON PLAN

COURSE TITLE:	COURSE CODE:	CREDIT	MINIMUM CONTACT
Fluid Mechanics & Hydraulics	CE227	HOURS: 03	HOURS: 48

COURSE INSTRUCTER: Engr. Abdul Qudoos Malano (B+C) / Engr. Hafiz Usama Imad (D) / Engr. Shaheer

Kazi (A)

Semester: 3^{rd} Batch: 22CE Semester Starting Date: 20-11-2023 Semester Suspension Date: 29-03-2024

COURSE LEARNING OUTCOMES:

CLO No.	Description	Taxonomy level	Associated PLO
1	DESCRIBE the concepts related to fluid statics, kinematics, dynamics and simulation model of a real hydraulic structure.	C2	1
2	SOLVE problems related to various open channel x-sections and flow based on hydraulic energy & momentum principles.	С3	2

LESSON CONTENTS AND ASSOCIATED CLO(s)

Contents	CLO	Marks	Delivery	Assessment
	No.	Assigned	Methods	Methods (Marks)
Properties of Fluid Density, Specific weight, Specific volume, Specific gravity, Viscosity and Newton's law of viscosity, Bulk modulus of elasticity, Surface tension, Capillarity, Dimensions and Systems of units. Fluid Statics Pressure; Pressure head, Pressure-head relationship, Atmospheric pressure, Absolute pressure, Gauge pressure and Pascal's law. Equipment's for measurement of pressure, Piezometer, Manometers, Bourdon gauge and Mechanical gauges. Hydrostatic pressure, Buoyancy and stability of floatation. Fluid Kinematics Basic concepts of uniform and non-uniform, Flow rate and mean velocity, Acceleration in fluid flow. Fluid Dynamics Continuity equation in differential form for steady and unsteady flows, Continuity equation's integral form, Total head or energy (Bernoulli's) equation and its applications. Hydraulic Similitude Dimensions analysis of physical quantities (FLT or MLT system of measurement) by Releigh's or Buckingham's π-Theorem and its applications, Model analysis, Model and its prototype's geometric, kinematic, dynamic and hydraulic similarities, Dimension less number and their significance. No. of lectures: 26	1	Assigned 55	• Class Lecture • Discussion • Example practice	• Class Test-I (05) • Assignment-I (05) • Mid Semester Exam (30) • Final Exam (15)

ASSESSMENT DETAILS

S. No.	Assessment Activities	Marks	Activities		CLO(s) to be assessed
1 Class	Class Test/Assignment/ Quiz	20	Assignment(s)	2	1,2
	Class Test/Assignment/Quiz		Class Test(s)/Quiz(s)	2	1,2
2	Mid Semester Exam	30	1		1
3	Final Semester Exam	50	1		1, 2

Prepared by: Engr. Abdul Qudoos Malano

Signature:

Dated: 13-11-2023

Reviewed by: Curriculum Review

Committee

Signature:

Dated: 12-12-2023

Approved by: Chairman, CED

Signature:

Dated: 12-12-2023